Production Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Method at PT. XYZ
Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) di PT. XYZ
Abstract
In production planning and control the first step is to forecast to determine how much production, the company forecasting is still not optimal, because forecasting has an important role in a company. PT. XYZ is a food company that produces chicken meatballs and chicken dumplings. So from that this study uses the forecasting method Autoregressive Integreted Moving Average (ARIMA). ARIMA is often also called the Box-Jenkins time series method. ARIMA is very good for short-term forecasting, while for long-term forecasting the forecasting accuracy is not good. The purpose of this research is to get a good ARIMA model, used to forecast production in the company. So that the production becomes optimal and not excessive which can cause waste of raw materials, which will make production costs a lot. Data processing is done with the help of an Eviews computer program to determine a good ARIMA model, from processing data obtained by ARIMA (1.0,0). With the results obtained forecasting in the period 37 to period 48.
References
Anityaloka, R. N., & Ambarwati, A. (2013). Peramalan Saham Jakarta Islamic Index Menggunakan Metode ARIMA Bulan Mei-Juli 2010. Statistika, 4(1).
As'ad, & Dkk. (2013). Peramalan Pertumbuhan Penduduk Kabupaten Situbondo Dengan Model ARIMA, Deret Aritmatika, Deret Geometrid dan Deret Exponensial. Kadikma, 4(1).
Makridakis, S., & dkk. (1999). Metode dan Aplikasi Peramalan, Edisi Kedua. Jakarta: Binarupa Aksara.
Nasution, A. H. (1999). Perencanaan dan Pengendalian Produksi. Jakarta: Guna Widya.
Pramujo, B., & dkk. (2014). Pemodelan Debit Menggunakan Model ARIMA Guna Menentukan Pola Operasi Waduk Selorejo. Jurnal Teknik Pengairan, 5(2).
Putra, A. A., & Ardial, A. (2013). Penggunaan Metode ARIMA Untuk Meramalkan Jumlah Wisatawan Mancanegara yang Datang ke Sumatera Utara Melalui Fasilitas Bandara Internasional Polonia Medan. Proseding Semira FMIPA.
Sinulingga, S. (2013). Perencnaan dan Pengendalian Produksi, Edisi Pertama. Yogyakarta: Graha Ilmu.
Wibowo, H., & dkk. (2012). Peramalan Beban Listrik Jangka Pendek Terklasifikasi Berbasis Metode Autoregressive Integrated Moving Average. Electrans, 11(2).
Copyright (c) 2018 Mohammad Buchori, Tedjo Sukmono
This work is licensed under a Creative Commons Attribution 4.0 International License.