Production Forecasting with Multiple Linear Regression Method


Peramalan Produksi dengan Metode Regresi Linier Berganda


  • (1) * Sulistyono Sulistyono            Universitas Muhammadiyah Sidoarjo  
            Indonesia

  • (2)  Wiwik Sulistiyowati              
            Indonesia

    (*) Corresponding Author

Abstract

Dengan banyaknya pembangunan gedung-gedung, merupakan peluang besar yang bagus untuk industri mesin pendingin. Untuk memenuhi terhadap permintaan mesin pendingin diperlukan peramalan yang tepat dalam pengambilan keputusan dalam proses produksi. Peramalan produksi merupakan bentuk pembuatan keputusan yang dijadikan sebagai landasan dibanyak industri manufaktur dan industri pelayanan. Tujuan dilakukan penelitian ini adalah untuk meramalkan jumlah produksi sehingga dapat menentukan jumlah produksi mesin pendingin dalam 12 periode dimasa yang akan datang. Analisis regresi merupakan analisis yang bertujuan untuk menentukan model yang paling sesuai untuk pasangan data serta dapat digunakan untuk membuat model dan menyelidiki hubungan antara dua variabel atau lebih. Hasil persamaan matematika regresi yang mempengaruhi jumlah produksi adalah variabel kerusakan mesin (KM) dan harga bahan baku (HBB) serta jumlah tenaga kerja (JTK) nilai konstanta 500.308 menyatakan bahwa jika tidak ada variabel kerusakan mesin, harga bahan baku dan jumlah tenaga kerja, maka jumlah produksi sebesar 500.300. Dengan mengasumsikan diabaikannya variabel independen lainnya, jika kedua variabel (X1_KM) bernilai positif sebesar 47.869 dan (X2_HBB) bernilai positif sebesar 7.2700000, maka jumlah produksi meningkat sebesar 1%, dan jika variable (X3_JTK) bernilai negatif -3.460, jumlah produksi mengalami penurunan 1%, sebesar 3.640.

References

Nasution, H. A. (2003), Perencanaan dan Pengendalian Produksi, edisi Pertama Cetakan Kedua, Guna Widya.

Mona., M.G, dkk.m (2015)., Penggunaan Regresi Linear Berganda untuk Menganalisis Pendapatan Petani Kelapa Studi Kasus: Petani Kelapa di Desa Beo, Kecamatan Beo Kabupaten Talaud., JdC., Vo. 4., No.2.

Anggraeni, W. linawati, F. danVinarti, A.R. (2012) “Implementasi Metode Regresi Berganda Untuk Meramalkan Permintaan Mobil Dengan N- Variabel Bebas Adaptif”, Jurnal Sistim Informasi, Vol. 4, No. 2, hal. 76-87.

Wahyono, T. (2009). 25 Model Analisis Statistik dengan SPSS 17, Penerbit PT Elex Media Komputindo

Wibisono, Y. (2005) Metode Statistik. Cetakan pertama, Penerbit Gajah Mada University Press.

Santoso, S., (2000)., Latihan SPSS Statistik Parmetik, Gramedia Jakarta.

Supranto., J., 2004., Analisis Multivariat Arti dan Interpretasi., Rineka Cipta., Jakarta

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2017-12-30
 
How to Cite
Sulistyono, S., & Sulistiyowati, W. (2017). Production Forecasting with Multiple Linear Regression Method. PROZIMA (Productivity, Optimization and Manufacturing System Engineering), 1(2), 82-89. https://doi.org/10.21070/prozima.v1i2.1350
Section
Articles